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1. introduction and motivation

The full nonlinear Kalman filter (KE) sequential algorithm is, in theory, well-suited to the four-dimensional data
assimilation problem in large-scale atmospheric and oceanic problems (Ghiler al. 1981, Ghil and Malanotte-Rizzoli
199 1). Soon after Kalman’s (1 960) semina paper, estimation practitioner’s and numerical analysts became aware of
numerical difficulties inherent in the discrete KF recursion equations. A number of early researchers (Bellantoni and
Dodge 1967, Schmidt er al. 1968, 1.condes 1970) showed that the KF algorithm can be very sensitive to computer
round off and that results may cease to be meaningful as time advances— even in double precision. A frequent symptom is
that an error covariance matrix loses its positive definiteness; this is frequently aggravated by true numerical ill-
conditioning which cannot be improved by a simple resealing of units. Filter “divergence” (Schlee et al. 1967), i.e.,
numerical results that wildly contradict predicted analytic behavior, encompass at least 3 types of divergence, due to: (1)
the effects of computer roundoff, (2) the presence of nonlinearities, and (3) the use of incorrect a priori statistics and an
erroneous dynamic model.

These computational shortcomings of the original KF algorithm have motivated aternative formulations of the
optimal sequential estimator. Still, many recent KF papers seem oblivious to the conventional discrete KE’s numerical
stability problems, or, at the most, consider these to be a computational nuisance. When implementing the extended Kt
(EKF) for anonlinear, primitive-equation model with realistic forcing and topography, this issue cannot be ignored: it isa
challenging part of the overall problem. The causes of filter-divergence types (1) and (2) play a prominent role in the
design of the Kalman-type estimation algorithms discussed below.

A sguare-root formulation of the KF has inherently better stability anti numerical accuracy than the conventional
Kalman formulation (Jazwinski 1970, Bierman 1977, Kerr 1990). Square-root filters arc algebraically equivalent to the
K F, but invol vc fundament adly different computational methods. A complete suite of square-root type KF recursions was
developed primarily for interplanetary spacecraft navigation (Dyer and McReynolds 1969, Thornton and Bierman 1976,
Bierman 1977) and yields numerically robustKF implementations. This is, in part, duc to the fact that using square-root
matrix factors implicitly preserves symmetry and assures nonnegative eigenvalues for the computed covariance; it also
reduces the condition number of the matrices that must be inverted.

Square-root algorithms arc, nonetheless, not very widely used, because of the erroncous perception that factorization
techniques are too complicated compared to the conventional KY, usc too much computer storage, and involve too much
computation. This perception is due in large part: (1) to an incomplete understanding of the square-root algorithms that
arc heavily dependent on advanced numerical analysis (Golub and Van Loan 1989, 1.awson and Hanson 1974), and (2) on
the use of inefficient computer implementations.

The optimality of Kalman-type sequential estimators, whether conventional or square-root, comes at the price of an
enormous increase in the number of operations for a full EKF implementation. For models with » discrete variables, the
cost of advancing the error covariances onc time step with the classical Kalman formalism is about n times that of
integrating the model itself. Since codes simulating or predicting large-scale flows currently have 105-106 variables, KF
implementations have so far been mostly experimental, and in low-resolution modcls with up to a few thousand variables
(Jiang and Ghil 1993, and references therein). To mitigate this computational barrier, a number of banded approximations
to the KI¥ (Parrish and Cohn 1985: PC hereafter; Todling and Ghil 1990) have been explored. These approximations to
the conventional KF arc based on retaining only those elements of the covariance matrix which differ significantly from
zero. Since covariances tend to zero with increasing distance (Balgovind ef al. 1983), it is feasible to calculate- -and
store-- only those diagonals of the forecast-error covariance matrix that contain significant correlations, rather than the
entire matrix. The information contained in this greatly reduced set of diagonals isthen a good approximation to that
contained in the full covariance matrix. These authors also exploited the block-sparseness of the state transition matrix
that arises fromthe finite-ciiffcrcnce scheme; the result was a computationally feasible K for a linear two-dimensional
(2-D) shal]ow-water system. Unfortunately- within the conventional KF formulation— this banded approximation
induces a distinct loss of positive-dcfhitcncss in the propagated covariance matrix after a few assimilation steps, and the
method therefore fails.

To achieve a non-diverging EKF that is computationally feasible for large geophysical-flow models and is as close to
optimal as possible, wc have extended PC’ S banded algorithm, retaining the computation-saving device of diagona-wise
matrix operations on sparse banded matrices, but within a square-root framework. A less restrictive form of the banded
approximation was used, to permit the U-1D factorization.
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2. The U-]) square-root filter

The type of square-mot KF wc implemented, the so-called U-D filter (Bicrman 1977), involves a triangular
factorization of the covariance matrix P which requires no actual squase-root calculations, thus enhancing efficiency. The
U-D filter makes use of the matrix decomposition

1=UDU’, (1)
where D and U arc, respectively, diagonal and unitary upper triangular (2 X n) matrices of the form
1 XX x -+ X
01X x - X
001 .
I) :diag[dl,(jz,"',dn], l] = 000 ])-(! )1(: (zavb)
P T X
000--01

This algorithm is of square-root type since UD " 2 is acovariance matrix square root. ‘1 ‘he numerical stability and accuracy
of this algorithm--which relates the U-D observation update cycle to the numericaly stable Givens orthogonal
transformation method- has been established by Gentleman (1 973). Morcover, the U-ID algorithm approaches the
conventional KF in both timing and storage requirements if coded efficiently, e.g., exploiting the zero lower-triangular
portion of the U factor in liq. (2b) by storing and performing computat ions on nonzero matrix entries only.

U-D factorization is applied to both the covariance propagation in time (forecast) and data update (assimilation) in
Kalman's sequential algorithm, so that all elements of the discrete KF equations- including the gain matrix--are
expressed in terms of these factors. Wc outline here only the U-D form of the covariance matrix propagation step, since it
is the dominant computational burden in the K. The KF covariance propagation equation, in the notation of Ghil and
Malanotte-Rizzoli (1 991), is

pl= RO ()
where B/ and I, arc the forecast covariance at time step k and the analysis covariance at step k-1, and Y’ and Q are the
state-transition and process-noise (model error) matrices. Using Eq. (1), Eq. (3) can be written as
UID{ULT =Y UL DL UL+ A O AL (4
with A defined so that Q' is diagonal. The right-hand side can be factored as YZ Y7, where
Y=[% UL, A Z:[”f*? f ] . (5a,)

This factorization has the same general form as Eq. (1), but not the same dimensions, and Y is no longer upper
triangular. The cycle is completed by transforming Y and Z to the desired (n x n) unitary upper triangular and diagonal
form, using a weighted Gram-Schmidt orthogonalization procedurc (Golub and Van Loan 1989, Sec. 5.2.8) on y;, the
rows of Y, that generates a set of n Z-orthogonal vectors, ;. The elements of the desired I)[ and U[ arc then given by

. :
O/ Zb)ld, =12 ] _y,
0, P>,

(6a,b)

(1’..:IJ}ZI)J. L i=benn u, ::{
which completes the propagation from I and Udito I)I{ and Uk[-

A measure of the potential for computational difficulty is the condition number, k(”), defined as A 25 /2 min» Where
Apax @d A, arc the maximum and minimum eigenvalues of the symmetric, positive-definite matrix P. If K(P) is
large---on the order of 10", where r is the number of significant digits in a computer word-—computational difficulties are
certain to arise. Conditioning is improved by using estimation equations that usc the square roots of 2 rather than P itself,
since for the square-root matrix k(UD'2)=10"*,

To introduce sparseness into the discrete estimation equations, wc approximate the full P by the symmetric banded
approximation £p:

A
XX X
XX X - X
PX X X e X
XX X X X oo X
XX X X X -+ X (7
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where the widthof the central band in terms of nonzero diagonals is 28+ 1; B = 3N, (2b+1), with Niop, the number of
longitudinal grids points, and b the bandwidth parameter given by the number of grid points—away from a base point in
each coordinate direction-—over which nonzero covariances will be calculated. Only the nonzero diagonals of Py arc
stored. IHor Py to be decomposable into U-D form, it cannot preserve any zero diagonals imbedded in the central band.
Thus, our central diagona band is a priori completely nonzero,while PC'S was interspersed with sub-bands of zero
diagonals, duc to block-bandedness. This kcy difference aIIows us to decompose. the sparse approximation I’; into U-D
square-root factors: if P has the form (7), then Py = UyDUyT, where Up is unit upper triangular and I is diagonal, if and
only if Uy hasthe form

U, = Ix X",

The banded covariance approximation (7, 8) is more computationally expensive (i.e., With more nonzero elements
needing to be stored and computed) than that of PC, but it allows us to retain the U-1) factorized form, which, in turn,
yields a near-optimal discrete filter that doesn’'t diverge. The new U-D sguare-root filter still takes full advantage of the
induced sparseness by not storing-— or doing computations o]]—-thc n--3—1zero diagonals in the upper-right portion of the
Uy factor (8).

3.‘henonlinear shallow-water model

The model used in this study is a 2-I> nonlinear shallow-water model, which describes divergent barotropic motion in
a hydrostatic fluid with a free surface, confined to a beta-plane channel centered at 45" N (Todling and Ghil, 1994). The
discretization is based on a second-order accurate, cluaclratic-energy -conserving finite-difference scheme (eg.,
Grammeltvedt 1969), using a modified Euler-backward method in time. The prognostic variables are the zonal and
meridional velocities, ¥ and v, and geopotential height h at each gridpoint. ‘1" he boundary conditions are very simple: v is
set to zero at the meridional boundaries of the computational domain, and « and / are independent of longitude along the
same boundaries. All fields arc periodic in the zonal direction.

For estimation purposes, the dependent variables arc organized into anordered state vector of length n, where nis
three times the number of grid points. The nonzero diagonals of the sparse n X » state transition matrix Y’ arc computed
analytically with a tangent-linear approximation, This matrix is used in advancing 7’ asin Eq. (3), while the state itself is
advanced by the full nonlinear equations of motion.

4.Numerical results
4.1U-D filtertest

Wc have run several assimilation experiments on a 17 x 24 grid with boundaries at 25°N and 65"N (5000 km
meridionally), so that Ax = 1178 km and Ay = 312.5 km, with an integration step size of Ar= 15 rein, and with
n=3x 17 x 24 = 1224 state variables. This modelsize is comparable to advanced lincar KF implementations (Jiang and
Ghil 1993, Miller ef al. 1994, Todling and Ghil 1994), but the present method should permit, once tested, much larger
applications. The height h of the model’s free surface is given initialy, and the initial data for the velocity components u«
and v are calculated from the geostrophic relation. The initial state is a westerly jet with north-south perturbations of
different wavelengths and amplitudes along its zonal axis. Synthetic observations are taken every 3 hours, and arc
processed using the U-D square-root EKF of Sec. 2 with the bandwidth parameter b ranging from 2 to 4 and full (i.e., no
approximation, B=n = 1224). A diagonal model-error (process-noise) matrix () with nonzero variances for al variables
was used in al the experiments.

For the relatively small model size used in these experiments, the banded approximation yields modest computational
savings. For example, for b = 3, the number of nonzero diagonals of the covariance matrix that must be stored and
calculated is 504 out of atotal of n = 1224. ‘ Jhisyields a savings of about 1/2 in the floating-point operation count, since
the centrally located diagonals retained are longer than the ones omitted. However, for a more redlisticaly sized
atmospheric or oceanic model, the savings can be more dramatic: for a global model with a 2° x 2° grid using a
bandwidth parameter b = 4, only 10% of the diagonals of the full covariance matrix arc retained and calculated with the
approximation. As an accuracy check of the banded U-D filter, wC note that the resulting state estimates and their
associated error-covariance estimates- obtained using » = 2, 3, and 4— did not differ in any significant way from those
obtained using the full U-D filter.
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On the other hand, a check of the U-D filter's overall performance relative to that of a conventional EKF (CKF
hercafter) yielded dramatic results. Every U-D filter experiment was successfulinthat the filter performed in a
numerically stable, ncm-divergent manner; the same cases run with the CKF-on the same CRAY YMP using the same
precision—invariably failed duc to filter divergence after a few forecast-update steps. The failures were al similar: each
would terminate due to a sudden rapid increase in the norm of the computed / matrix, culminating in computer overflow
within one day after initial time. It is interesting that compat i son CKI< runsieplicated almost exactly the full U-D filter
results (b= n) during the first few assimilation steps; soon, however, 1esults would begin to drift apart duc to the accrual
of numerical errorsin the unstable CKF computations, followed rapidly by the C K¥'s blow-up.

4.2 State and covariance estimates

Wec show the results of an “identical-twin” experiment where, starting with an initial “guess” w¢(t,) of the “true”
initial state w(1,), WC use noisy observations of the “true” evolution w'(1), f > 1, to obtain a U-D filter estimate w%(t) that
converges to the true field w/(1) as assimilation proceeds.The initial error w(t,)-w'(1,) was generated with a
geostrophicall y balanced perturbat ion that has approximate root-mean-square (R MS) values of Au = 3.8 m/s and Av =
1.29 m/s for the velocities, and Ah = 370 m for the geopotential height (Fig. 1), with the RMS taken over all grid points.
The observing pattern used was highly idealized and the observations rather plentiful in this preliminary experiment:
observationsof «, v, and h weremade c-very 12 At =3 hoursat al grid points.
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Figure 1. The 3-day evolution of the RMS assimilation error taken over al the grid points of
the beta-plane channel. The estimate error for the wind components » and v and
the geopotential height 4 are shown individually at each forecast step. There arc 96
forecast steps pcr day, and the fields are updated every 12 At (3 hours).

Observations were generated by adding random, uncortelated Gaussian noise to the true trajectory, with standard
deviations o, = 2 m/s, 0, = 0.75 m/s, and o;, = 75 m. The observations were processed sequentially at each assimilation
time (Ghil and Malanotte-Rizzoli 1991, p. 185, and references there), with each row of the observation matrix H
containing a single entry equal to one. and the rest zeros. Model e. | rors were also assumed to be uncorrelated, with
standard deviations of 10 m/s, 5 nv/s, and 200 m pcr half-day for «, v, and h, respectively. The initia ana]ysis-error
covariance matrix, I;,", was taken to be diagonal, with standard deviat ions given by 2Srids, 8 m/s, and 1000 m for u, v,
and h. Figure 1 shows the. RMS error results of a 3-day assimilation run at each forecast and analysis sten: the. RMS grrors
in the u,gv, and # fields are computed from the vectca)?/ \K/’f( 1) —wi(1) by Summing over all gflganXl%S- 'lel?c e§l ml\r':/l{edeglﬂlc
is seen to converge to the true state in al components.

Figure 2 depicts the evolution of the estimated error in «. Each panel in the figure shows the state-estimate error at a
specific forecast time over the rectangular beta-channel region with a gray-scale range depicting errors in the wind
component ranging from -4 m/s (black) to +4 m/s (white). The images progress in time from 6 hours to 48 hours past
initial time, and show the estimated state converging over the entire spatial domain to the true trajectory.

A closer inspection of Fig. 1 reveals a manifestation of a problem that will be. at once: (1) new to many KF
practitioners; (2) explainable only with advanced numerical analysis concepts; (3) difficult, but not impossible, to solve;
lirld----asidc from the computational burden- (4) probably at the heart of what will be the major difficulty in applying the
EKF to data assimilation for highly resolved geophysical flow models.InFig. ], at the update time itself, the state
estimation error increases, rather than dccreases. This problem arises from the fact that errors in the observational
residual-the difference between an observed value and the. model’s prediction of that value- arc transformed by the
Kalman inversion process, even in the square-root form, into large errors in the. state estimate along those directions in the
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Figure 2. Time evolution of the estimated state error in u; gray scale. 1 lach image depicts
the error over the rectangular beta-channel re fion which constitutes the domain
of the cm-layer shallow-water model used. The 17 parallels run 25° to 65° N,
and the 24 meridians run from 0° to 360° k5.

r?-dimensional phase space that correspond to eigenvectors of l'{ associated with large cigenvalues. A heuristic
explanation of this fact in the context of large-scale geophysical, mid-latitude flows, is that the divergence of the flow
field is much smaller that the curl. Hence, errors in observed divergence will affect the assimilated result much more
seriously than errors of similar size in the curl. This problem is ubiquitous in EKF estimates of large nonlinear systems
that (1) require lincarized approximations, and (2) possess covariance matrices: and hence their inverses, the system
information; matrices- that are ill-conditioned.

Figure 3 shows the evolution in time of the spectrum: each curve isthe]]lagilitliclc-ordered set of n=1224 cigenvalues
computed from the forecast-error covariance matrix that results at each of 6 forecast steps, namely steps 1, 2, 3, 4,13, and
37 following initial lime t,, with the updates occurring after steps 13, 25, 37, etc. A significant increase, of almost 10 in
the condition number is evident in the early filtering stages; this imnplies aserious numerical stability problem in the
making. The system that must be (at least implicitly) inverted to proceed with the KE process is seen to be rapidly
reaching the stage that standard inversion methods will not work.
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Figure 3. Magnitudc-ordered spectrum of the 12.24 x 1224 forecast-error covariancc matrix at 6
different time steps of the assimilation. Curve l(bold) shows the. eigenvalues for the
3-tiered initial @ priori uncertainty for each of the 3 variablesw, v, and h. Curves 2, 3,
and 4 arc the eigenvalues for forecast steps 2,3, 4, immediately following the initial
time. Curve 5 results at the last forecast step iinmediately preceding the first analysis
time. Curve 6 shows the cigenvalues preceding the third analysis time (step 37).
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5. Summary

We have shown that a square-mot implementation of the EKF for a fairly redlistic shallow-water model is stable. This
can overcome the stability problems of the CKF encountered in space-navigation problems, many other engineering areas
(Kerr 1990, and references there), by Evensen (1992) in an oceanmodel, and in the present atmospheric model.

Using U-D factorization, @ modified version of Parrish and Cohn's (1985) banded approximation is stable. Until the
CKUF begins to diverge, it agrees quite well with the banded U-D squatc-root filter.

A square-root EKF has the best chance of dealing successfully with the problems posed by ill-conditioning of large
error-covariance matrices. The difficulties still encountered with the present U-D implementation will be surmounted in
the future by changing to a square-root information filter (SR1I: Bierman 1977).
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